AI/ML w łańcuchu dostaw: 45% redukcji zakłóconych dostaw

Innowise rozszerzył istniejące możliwości łańcucha dostaw klienta o DSaaS w celu prognozowania warunków wysyłki materiałów i zmniejszenia wskaźnika rezygnacji klientów.

Klient

Branża
Elektronika, Produkcja
Region
UE
Klient od
2022

Naszym klientem jest producent urządzeń elektronicznych i komponentów do nich, w tym telefonów komórkowych, pilotów TV, odtwarzaczy DVD i CD, aparatów cyfrowych i innych.

Szczegółowe informacje o kliencie nie mogą być ujawnione zgodnie z postanowieniami NDA.

Podsumuj artykuł za pomocą AI

Wyzwanie: W obliczu niedotrzymanych terminów dostaw i błędów w strategicznym planowaniu zasobów

Zapewnienie dobrze funkcjonującej sieci dostawców ma kluczowe znaczenie dla zagwarantowania terminowych dostaw zamówień. Nasz klient zoptymalizował już wydajność łańcucha dostaw, aby zmaksymalizować rentowność poprzez ograniczenie ryzyka związanego z wahaniami popytu, nieefektywnymi operacjami i zmiennymi cenami materiałów. Ponadto wdrożył rygorystyczne planowanie i harmonogramowanie, kompleksowe systemy kontroli zapasów i ciągłe monitorowanie w celu zapewnienia jakości.

Niemniej jednak, nasz klient nadal borykał się z niedotrzymywaniem terminów dostaw i błędami w strategicznym planowaniu zasobów. Aby zwiększyć dokładność i przewidywalność wyników operacyjnych, potrzebował zaawansowanego rozwiązania opartego na DS i ML do gromadzenia i analizowania dużych ilości danych oraz tworzenia realistycznych prognoz dotyczących terminów dostaw.

Rozszerzenie internetowe do przewidywania dostaw

Rozwiązanie: Rozszerzenie internetowe DS i MLOps do przewidywania dostaw i zapobiegania opóźnieniom w dostawach

Ponieważ nasz klient produkuje złożone urządzenia cyfrowe składające się z wielu części (rezystory, cewki indukcyjne, kondensatory, tranzystory, diody itp.), wymaga stabilnych, łatwych w zarządzaniu łańcuchów dostaw z obliczonym pewnym ryzykiem. Zależało mu na szerokim przeglądzie wszystkich wcześniejszych interakcji z partnerami, wzmocnionym możliwościami ML, aby analizować i przewidywać przyszłe dostawy oraz zapobiegać opóźnieniom lub przerwom w dostawach.

Na tej podstawie Innowise zasugerował zbudowanie inteligentnej platformy analizy kontraktów, która obejmuje DS i MLOps, aby przekształcić surowe dane w przydatne informacje. Nasz zespół projektowy w pełni wykorzystał te technologie i wdrożył AI/ML w łańcuchu dostaw, aby zabezpieczyć procesy zakupowe i złagodzić negatywne skutki.

Rozszerzenie internetowe MLOps

Potokowanie danych

Gdy menedżerowie wypełnią wszystkie informacje dotyczące określonych partnerów (zapotrzebowanie na materiały, czasy dostaw, zapasy magazynowe itp.), nasza platforma tworzy prognozy w oparciu o potoki danych. W ten sposób wdrożyliśmy dogłębną analizę danych, aby wychwycić dryf danych i rozbieżności między działami. Zasadniczo każdy krok w cyklu tworzy dane wyjściowe, które stanowią podstawę dla kolejnych przekształceń, co skutkuje ciągłym przepływem, aż do zakończenia każdego kroku. W stosownych przypadkach wiele procesów jest przeprowadzanych równolegle, aby zmaksymalizować wydajność.

Rozszerzenie internetowe DS i MLOps

Warstwy modelowania

Opracowaliśmy platformę uczenia maszynowego, która szacuje kluczowe czynniki wpływające na wydajność procesu zaopatrzenia. Nasz zespół stworzył warstwę logiczną, która grupuje dane w podobne kohorty i trenuje modele dla każdej grupy. Ponadto włączyliśmy warstwę wyjaśniającą, aby pomóc użytkownikowi końcowemu zweryfikować zachowanie modelu i lepiej zrozumieć szacunki.

Mówiąc najprościej, przepływ rozwiązania można opisać w następujący sposób. Użytkownicy wprowadzają wszystkie dane dotyczące konkretnych dostawców, takie jak identyfikatory kontraktów, wymagane materiały, daty zamówień/dostaw, bieżący postęp i wszelkie informacje pomocnicze. Następnie, w oparciu o algorytmy ML w łańcuchu dostaw, platforma analizuje wskazane dane i przewiduje daty zamówień, biorąc pod uwagę historię poprzednich interakcji, niezawodność dostawcy i ryzyko zewnętrzne. Analityka predykcyjna może na przykład wskazywać, kiedy poziom zapasów u dostawcy jest niski lub kiedy opóźnione dostawy mogą spowodować poważne problemy w przyszłości.

Technologie

TypeScript, NodeJS, Nest, TypeORM
TypeScript, React, Next.JS, MobX, MUI
Tensorflow, Keras, PyTorch, Scikit-learn, MLFlow
Pandas, Matplotlib, Plotly, Numpy
PostgreSQL
QA
AQA, Podręcznik

Proces

Na pierwszym etapie nasi specjaliści wyjaśnili i przedefiniowali cele klienta, ponieważ pierwotna propozycja zawierała wiele kwestii dotyczących wykonalności i końcowego zastosowania. W trakcie całego procesu rozwoju nasi specjaliści zastosowali dodatkowe podejścia AutoML w celu zwiększenia szybkości dostarczania modelu. Ponieważ nasz model otrzymał więcej próbek podobnych do ostatnich, wdrożyliśmy niestandardową technikę ponownego próbkowania, która zmniejszyła efekt dryfu danych.

Nasz zespół projektowy pracował w oparciu o metodologię Scrum z dwutygodniowymi sprintami i codziennymi spotkaniami. Kierownik projektu pozostawał w stałym kontakcie z klientem, dostosowując się do zmian w zakresie. Wszystkie zadania były śledzone w Jira, a kierownik projektu przydzielał zadania i nadzorował ogólną wydajność.

Obecnie projekt jest aktywny, a nasz zespół pracuje nad poprawą przewidywania wyników i integracją modułów łańcucha dostaw ML.

DS i MLOps

Zespół

1
Kierownik projektu
1
Analityk biznesowy
2
Programistów front-end
2
Programistów back-end
2
Inżynierowie ML
1
Projektant UI/UX
1
QA Engineer

Wyniki: Przewidywalne moduły łańcucha dostaw ML z 630% zmniejszają ryzyko zatrzymania linii produkcyjnej

Innowise wzbogacił możliwości ML łańcucha dostaw klienta o rozszerzenie DSaaS w celu przewidywania warunków dostawy. Dzięki algorytmom ML i DS, które uwzględniają wiele zmiennych w złożonym systemie łańcucha dostaw, klient może teraz stale monitorować potencjalne kwestie związane z zaopatrzeniem i dokładniej planować wysyłki, zapobiegając powstawaniu silosów informacyjnych. Dzięki nowatorskiemu rozwiązaniu klient może pewnie zarządzać procesami łańcucha dostaw, nie martwiąc się o nieprzewidziane komplikacje lub opóźnienia operacyjne. Dodatkowo, dzięki uczeniu maszynowemu w łańcuchu dostaw, nasz klient może teraz podejmować świadome decyzje, które przyczyniają się do doskonałości operacyjnej i zwiększonych przychodów w cyfrowych punktach sprzedaży.

Czas trwania projektu
  • Październik 2022 r. - w toku

45%

zmniejszenie liczby zakłóconych dostaw

630%

niższe ryzyko zatrzymania linii produkcyjnej

    Formularz kontaktowy

    Umów się na rozmowę lub wypełnij poniższy formularz, a my odezwiemy się do Ciebie po przetworzeniu Twojego zgłoszenia

    Wyślij nam wiadomość głosową
    Załącz dokumenty
    Prześlij plik

    Można załączyć 1 plik o rozmiarze do 2 MB. Prawidłowe formaty plików: pdf, jpg, jpeg, png.

    Klikając Wyślij, wyrażasz zgodę na przetwarzanie Twoich danych osobowych przez Innowise zgodnie z naszą Polityką Prywatności w celu przekazania Ci odpowiednich informacji. Podając numer telefonu, zgadzasz się na kontakt za pośrednictwem połączeń głosowych, SMS-ów lub komunikatorów. Mogą obowiązywać opłaty za połączenia, wiadomości i transmisję danych.

    Możesz także wysłać swoje zapytanie
    na adres contact@innowise.com
    Co dalej?
    1

    Po otrzymaniu i przetworzeniu zgłoszenia skontaktujemy się z Tobą, aby szczegółowo opisać projekt i podpisać umowę NDA w celu zapewnienia poufności.

    2

    Po przeanalizowaniu Twoich potrzeb i oczekiwań, nasz zespół opracuje propozycję projektu z zakresem prac, wielkością zespołu, czasem i szacunkowymi kosztami.

    3

    Zorganizujemy spotkanie w celu omówienia oferty i ustalenia szczegółów.

    4

    Na koniec podpiszemy umowę, błyskawicznie rozpoczynając pracę nad projektem.

    strzałka