Développement de l'apprentissage automatique

Innowise delivers more than algorithms — we bring a fundamental shift in how you operate. From automating routine tasks to enhancing customer experiences and predicting market trends, we build ML systems that grow with your business, eliminate inefficiencies, and unlock new revenue streams.

40+

completed machine learning projects

40+

AI/ML engineers

75%

mid & senior-level developers

Innowise delivers more than algorithms — we bring a fundamental shift in how you operate. From automating routine tasks to enhancing customer experiences and predicting market trends, we build ML systems that grow with your business, eliminate inefficiencies, and unlock new revenue streams.

40+

completed machine learning projects

40+

AI/ML engineers

75%

mid & senior-level developers

Drowning in messy data with no clear direction?

Let ML turn that chaos into clarity.

Logo Google. Logo Hays. Logo PayPal. Logo Siemens. Logo Nike. Logo Volkswagen. Logo LVMH. Logo Nestlé. Logo Novartis. Logo Spotify.
Logo Google. Logo Hays. Logo PayPal. Logo Siemens. Logo Nike. Logo Volkswagen. Logo LVMH. Logo Nestlé. Logo Novartis. Logo Spotify.
Logo Aramco Logo Mercedes. Logo de Costco Wholesale. Logo de la coquille. Logo Accenture. Logo NVIDIA. Logo SPAR. Logo Mastercard. Logo de CVS Health. Le logo Walt Disney.
Logo Aramco Logo Mercedes. Logo de Costco Wholesale. Logo de la coquille. Logo Accenture. Logo NVIDIA. Logo SPAR. Logo Mastercard. Logo de CVS Health. Le logo Walt Disney.
Logo Google.Logo Hays.Logo PayPal.Logo Siemens.Logo Nike.Logo Volkswagen.Logo LVMH.
Logo Google.Logo Hays.Logo PayPal.Logo Siemens.Logo Nike.Logo Volkswagen.Logo LVMH.
Logo Nestlé.Logo Novartis.Logo Spotify.Logo d'Aramco.Logo Mercedes.Logo de Costco Wholesale.
Logo Nestlé.Logo Novartis.Logo Spotify.Logo d'Aramco.Logo Mercedes.Logo de Costco Wholesale.
Logo de la coquille.Logo Accenture.Logo NVIDIA. Logo SPAR.Logo Mastercard.Logo de CVS Health.Le logo Walt Disney.
Logo de la coquille.Logo Accenture.Logo NVIDIA. Logo SPAR.Logo Mastercard.Logo de CVS Health.Le logo Walt Disney.

Solutions d'apprentissage automatique que nous créons

Maintenance prédictive
Détection des fraudes
Prévision de la demande
Prix dynamique
Virtual assistants & real-time chatbots
Marketing automation solutions
Analyse du comportement des clients
Document, image & video processing
Systèmes de recommandation intelligents
Montrer tout Montrer moins
Philip Tihonovich
Chef du département Big Data

As noted in PluralSight’s AI Skill Report, 97% of companies deploying AI technologies report gains in productivity, service quality, and accuracy. Now, it’s clear: machine learning has shifted from a nice-to-have to a business-critical engine. It’s no longer about building models that look good in a lab — it’s about setting up living, breathing systems that learn, adapt, and drive real results where it matters most.

Philip Tihonovich
Chef du département Big Data

Our approach to machine learning development

At Innowise, we combine deep expertise in data science, MLOps, and model architecture design to build solutions that are not only accurate but also scalable, interpretable, and resilient in production.

Analyse des besoins

We start by translating business challenges into ML objectives. Clear goals upfront lead to models that actually deliver measurable impact.

Data preparation & processing

Before any model sees the light of day, we dig into the data — cleaning, structuring, and transforming it into a form that a machine can truly learn from.

Feature ingénierie

We transform cleaned data into smart inputs — choosing the right features, encoding categories, scaling numbers, and removing noise so the model can focus on real patterns.

Développement de modèles

We train models using the right algorithms, tune parameters, and validate performance to build solutions that work in real-world conditions.

Déploiement du modèle

Once the model is trained and validated, we prepare it for real-world use. This includes setting up APIs or batch processing pipelines, integrating the model with your existing systems, and more.

Tuning de modèle

Performance isn't a one-and-done deal. We monitor, fine-tune, retrain, and adapt models over time to keep them sharp.

Faites entretenir vos algorithmes ML par des professionnels

With 40+ expert ML engineers and 40+ successful projects, we help businesses turn data into real growth. From smarter decision-making to faster operations, our models are built to solve real-world challenges, boost efficiency, and open new revenue streams.

Plateformes avec lesquelles nous travaillons

Apprentissage automatique AWS
  • Vertex AI
  • Google Conversational AI
  • Google AI pour les documents
  • Google AI pour les industries
Apprentissage automatique Azure
  • Azure Cognitive Services
  • Azure Machine Learning
  • Azure Bot Services
  • Services Azure Applied AI
Google apprentissage machine
  • Amazon SageMaker
  • Amazon Transcribe & Polly
  • Amazon Comprehend
  • Amazon Rekognition

Choisissez votre modèle de tarification

Prix fixe

If you already have a clear idea of what you need, a fixed price is the simplest way forward. You’ll lock in the budget and deadlines upfront, so you can stay focused without worrying about unexpected costs.

Temps et matériel avec un plafond

If you’re still shaping the project or expect things to change along the way, the time and material model gives you the flexibility to adjust. You’ll pay for the work as it happens, which is perfect for ML projects.

Tired of one-size-fits-all software?

We create ML solutions built around your business needs.

Les avis de nos clients

Tim Benedict DIRECTEUR TECHNIQUE Vitreus
logo de l'entreprise

"Innowise a livré avec succès le MVP du client, marquant ainsi la réussite du projet. L'équipe a offert une excellente gestion de projet, car elle est très efficace et respecte toujours les délais. Dans l'ensemble, leur passion et la profondeur de leur expertise sont remarquables."

  • Industrie Services aux entreprises
  • Effectif de l'équipe 30 spécialistes
  • Durée 15 mois
  • Services Conception architecturale, blockchain, développement personnalisé
Ory Goldberg PDG Traxi
logo de l'entreprise

"Je suis très satisfait de la qualité de leur travail et de leur capacité à fournir exactement ce que je souhaite grâce à une approche très professionnelle. Leur flexibilité et leur disponibilité sont des éléments clés de la réussite du projet en cours."

  • Industrie Logiciel
  • Effectif de l'équipe 10 spécialistes
  • Durée 24+ mois
  • Services Développement mobile, développement web
Davide Criscione Fondateur et PDG DC Services GmbH
logo de l'entreprise

"Innowise a trouvé des ressources de haute qualité qui s'intègrent bien dans les équipes internes qui leur sont affectées. Les ressources étaient prêtes à démarrer dans un court délai. L'équipe offre une gestion de projet réactive et personnalisée. De plus, ils sont proactifs et ne font pas de promesses excessives."

  • Industrie Services informatiques
  • Effectif de l'équipe 12 spécialistes
  • Durée 15+ mois
  • Services Augmentation du personnel

FAQ

How much does machine learning app development cost?

Budgets typically fall between $40K–$200K. Costs depend on data preprocessing, model architecture (e.g., regression, CNNs, transformers), infrastructure (cloud/on-prem), and integration scope.

There’s no one-size-fits-all answer — simple models with clean data can be built in a few weeks, but real-world projects usually stretch over several months. A lot of time gets spent not on building the model itself, but on wrangling messy data, crafting meaningful features, tuning hyperparameters, and stress-testing the model across different scenarios.

We start by checking the data, looking for imbalances or patterns that could cause bias later. When we fine-tune models, we sometimes adjust the data weights or use special techniques like adversarial debiasing to help the model treat different groups more fairly. We also use explainability tools like SHAP to understand why the model makes certain predictions. After launch, we keep monitoring the model to catch any new biases early.

Machine learning is just one part of AI. ML focuses on learning from data—finding patterns, making predictions. AI, more broadly, includes rule-based logic, NLP, and even robotics. In most business cases today, when people say “AI,” they mean ML.

If your business generates data, ML is applicable. From predictive maintenance in manufacturing to risk scoring in finance or personalization in eCommerce, ML translates raw data into models that optimize processes, reduce costs, and improve CX.

N'hésitez pas à prendre rendez-vous pour obtenir toutes les réponses dont vous avez besoin.

FAQ

How much does machine learning app development cost?

Budgets typically fall between $40K–$200K. Costs depend on data preprocessing, model architecture (e.g., regression, CNNs, transformers), infrastructure (cloud/on-prem), and integration scope.

There’s no one-size-fits-all answer — simple models with clean data can be built in a few weeks, but real-world projects usually stretch over several months. A lot of time gets spent not on building the model itself, but on wrangling messy data, crafting meaningful features, tuning hyperparameters, and stress-testing the model across different scenarios.

We start by checking the data, looking for imbalances or patterns that could cause bias later. When we fine-tune models, we sometimes adjust the data weights or use special techniques like adversarial debiasing to help the model treat different groups more fairly. We also use explainability tools like SHAP to understand why the model makes certain predictions. After launch, we keep monitoring the model to catch any new biases early.

Machine learning is just one part of AI. ML focuses on learning from data—finding patterns, making predictions. AI, more broadly, includes rule-based logic, NLP, and even robotics. In most business cases today, when people say “AI,” they mean ML.

If your business generates data, ML is applicable. From predictive maintenance in manufacturing to risk scoring in finance or personalization in eCommerce, ML translates raw data into models that optimize processes, reduce costs, and improve CX.

N'hésitez pas à prendre rendez-vous pour obtenir toutes les réponses dont vous avez besoin.

Спасибо !

Cообщение отправлено.
обработаем ваш запрос и свяжемся с вами в кратчайшие сроки.

Merci !

Votre message a été envoyé.
Nous traiterons votre demande et vous recontacterons dès que possible.

Merci !

Votre message a été envoyé. 

Nous traiterons votre demande et vous contacterons dès que possible.

flèche