Entwicklung von maschinellem Lernen

Innowise delivers more than algorithms — we bring a fundamental shift in how you operate. From automating routine tasks to enhancing customer experiences and predicting market trends, we build ML systems that grow with your business, eliminate inefficiencies, and unlock new revenue streams.

40+

completed machine learning projects

40+

AI/ML engineers

75%

mid & senior-level developers

Innowise delivers more than algorithms — we bring a fundamental shift in how you operate. From automating routine tasks to enhancing customer experiences and predicting market trends, we build ML systems that grow with your business, eliminate inefficiencies, and unlock new revenue streams.

40+

completed machine learning projects

40+

AI/ML engineers

75%

mid & senior-level developers

Drowning in messy data with no clear direction?

Let ML turn that chaos into clarity.

Google-Logo. Hays-Logo. PayPal-Logo. Siemens-Logo. Nike-Logo. Volkswagen-Logo. LVMH-Logo. Nestle-Logo. Novartis-Logo. Spotify-Logo.
Google-Logo. Hays-Logo. PayPal-Logo. Siemens-Logo. Nike-Logo. Volkswagen-Logo. LVMH-Logo. Nestle-Logo. Novartis-Logo. Spotify-Logo.
Aramco-Logo Mercedes-Logo. Costco Wholesale-Logo. Shell-Logo. Accenture-Logo. NVIDIA-Logo. SPAR-Logo. Mastercard-Logo. CVS Health-Logo. Das Walt Disney-Logo.
Aramco-Logo Mercedes-Logo. Costco Wholesale-Logo. Shell-Logo. Accenture-Logo. NVIDIA-Logo. SPAR-Logo. Mastercard-Logo. CVS Health-Logo. Das Walt Disney-Logo.
Google-Logo.Hays-Logo.PayPal-Logo.Siemens-Logo.Nike-Logo.Volkswagen-Logo.LVMH-Logo.
Google-Logo.Hays-Logo.PayPal-Logo.Siemens-Logo.Nike-Logo.Volkswagen-Logo.LVMH-Logo.
Nestle-Logo.Novartis-Logo.Spotify-Logo.Aramco-Logo.Mercedes-Logo.Costco Wholesale-Logo.
Nestle-Logo.Novartis-Logo.Spotify-Logo.Aramco-Logo.Mercedes-Logo.Costco Wholesale-Logo.
Shell-Logo.Accenture-Logo.NVIDIA-Logo. SPAR-Logo.Mastercard-Logo.CVS Health-Logo.Das Walt Disney-Logo.
Shell-Logo.Accenture-Logo.NVIDIA-Logo. SPAR-Logo.Mastercard-Logo.CVS Health-Logo.Das Walt Disney-Logo.

Unsere Machine Learning-Lösungen

Prädiktive Wartung
Betrugserkennung
Bedarfsprognose
Dynamische Preisgestaltung
Virtual assistants & real-time chatbots
Marketing automation solutions
Auswertung des Verhaltens der Kunden
Document, image & video processing
Intelligente Empfehlungssysteme
Alles anzeigen Weniger anzeigen
Philip Tihonovich
Leiter der Big Data-Abteilung

As noted in PluralSight’s AI Skill Report, 97% of companies deploying AI technologies report gains in productivity, service quality, and accuracy. Now, it’s clear: machine learning has shifted from a nice-to-have to a business-critical engine. It’s no longer about building models that look good in a lab — it’s about setting up living, breathing systems that learn, adapt, and drive real results where it matters most.

Philip Tihonovich
Leiter der Big Data-Abteilung

Our approach to machine learning development

At Innowise, we combine deep expertise in data science, MLOps, and model architecture design to build solutions that are not only accurate but also scalable, interpretable, and resilient in production.

Anforderungsanalyse

We start by translating business challenges into ML objectives. Clear goals upfront lead to models that actually deliver measurable impact.

Data preparation & processing

Before any model sees the light of day, we dig into the data — cleaning, structuring, and transforming it into a form that a machine can truly learn from.

Feature engineering

We transform cleaned data into smart inputs — choosing the right features, encoding categories, scaling numbers, and removing noise so the model can focus on real patterns.

Modellentwicklung

We train models using the right algorithms, tune parameters, and validate performance to build solutions that work in real-world conditions.

Modell-Einsatz

Once the model is trained and validated, we prepare it for real-world use. This includes setting up APIs or batch processing pipelines, integrating the model with your existing systems, and more.

Optimierung des Modells

Performance isn't a one-and-done deal. We monitor, fine-tune, retrain, and adapt models over time to keep them sharp.

Überlassen Sie Ihre ML-Algorithmen den Profis

With 40+ expert ML engineers and 40+ successful projects, we help businesses turn data into real growth. From smarter decision-making to faster operations, our models are built to solve real-world challenges, boost efficiency, and open new revenue streams.

Verwendete Plattformen

AWS Machine Learning
  • Vertex AI
  • Google Konversations-KI
  • Google AI für Dokumente
  • Google AI für Branchen
Azure Machine Learning
  • Azure Kognitive Dienste
  • Azure Machine Learning
  • Azure Bot-Dienste
  • Azure Angewandte KI-Dienste
Google Machine Learning
  • Amazon SageMaker
  • Amazon Transcribe & Polly
  • Amazon Comprehend
  • Amazon Rekognition

Wählen Sie Ihr Preismodell

Festpreis

If you already have a clear idea of what you need, a fixed price is the simplest way forward. You’ll lock in the budget and deadlines upfront, so you can stay focused without worrying about unexpected costs.

Zeit und Material

If you’re still shaping the project or expect things to change along the way, the time and material model gives you the flexibility to adjust. You’ll pay for the work as it happens, which is perfect for ML projects.

Tired of one-size-fits-all software?

We create ML solutions built around your business needs.

Was unsere Kunden sagen

Tim Benedict CTO Vitreus
Firmenlogo

"Innowise implementierte problemlos ein MVP, was den Erfolg des Projekts kennzeichnete. Das Team hat ein hervorragendes Projektmanagement mit Hocheffizienz und pünktlicher Arbeit gewährleistet. Insgesamt sind ihre Leidenschaft und ihr umfassendes Fachwissen herausragend."

  • Branche Geschäftsservices
  • Teamgröße 30 Spezialisten
  • Dauer 15 Monate
  • Services Architekturdesign, Blockchain, kundenspezifische Entwicklung
Ory Goldberg CEO Traxi
Firmenlogo

"Ich bin sehr zufrieden mit ihrer hochwertigen Arbeit und ihrer Fähigkeit, durch einen sehr professionellen Ansatz genau das zu liefern, was ich will. Ihr flexibler und verfügbarer Prozess ist der Schlüssel zum Erfolg des laufenden Projekts."

  • Branche Software
  • Teamgröße 10 Spezialisten
  • Dauer 24+ Monate
  • Services Mobile Entwicklung, Webentwicklung
Davide Criscione Gründer & CEO DC Services GmbH
Firmenlogo

"Innowise hat hochwertige Ressourcen gefunden, die gut in die ihnen zugewiesenen internen Teams passen. Sie hatten die Ressourcen innerhalb kurzer Zeit startbereit. Das Team bietet ein reaktionsschnelles und sympathisches Projektmanagement. Darüber hinaus sind sie proaktiv und versprechen nicht zu viel."

  • Branche IT Services
  • Teamgröße 12 Spezialisten
  • Dauer 15+ Monate
  • Services Personalaufstockung

FAQ

How much does machine learning app development cost?

Budgets typically fall between $40K–$200K. Costs depend on data preprocessing, model architecture (e.g., regression, CNNs, transformers), infrastructure (cloud/on-prem), and integration scope.

There’s no one-size-fits-all answer — simple models with clean data can be built in a few weeks, but real-world projects usually stretch over several months. A lot of time gets spent not on building the model itself, but on wrangling messy data, crafting meaningful features, tuning hyperparameters, and stress-testing the model across different scenarios.

We start by checking the data, looking for imbalances or patterns that could cause bias later. When we fine-tune models, we sometimes adjust the data weights or use special techniques like adversarial debiasing to help the model treat different groups more fairly. We also use explainability tools like SHAP to understand why the model makes certain predictions. After launch, we keep monitoring the model to catch any new biases early.

Machine learning is just one part of AI. ML focuses on learning from data—finding patterns, making predictions. AI, more broadly, includes rule-based logic, NLP, and even robotics. In most business cases today, when people say “AI,” they mean ML.

If your business generates data, ML is applicable. From predictive maintenance in manufacturing to risk scoring in finance or personalization in eCommerce, ML translates raw data into models that optimize processes, reduce costs, and improve CX.

Vereinbaren Sie einen Anruf und erhalten Sie alle Antworten.

FAQ

How much does machine learning app development cost?

Budgets typically fall between $40K–$200K. Costs depend on data preprocessing, model architecture (e.g., regression, CNNs, transformers), infrastructure (cloud/on-prem), and integration scope.

There’s no one-size-fits-all answer — simple models with clean data can be built in a few weeks, but real-world projects usually stretch over several months. A lot of time gets spent not on building the model itself, but on wrangling messy data, crafting meaningful features, tuning hyperparameters, and stress-testing the model across different scenarios.

We start by checking the data, looking for imbalances or patterns that could cause bias later. When we fine-tune models, we sometimes adjust the data weights or use special techniques like adversarial debiasing to help the model treat different groups more fairly. We also use explainability tools like SHAP to understand why the model makes certain predictions. After launch, we keep monitoring the model to catch any new biases early.

Machine learning is just one part of AI. ML focuses on learning from data—finding patterns, making predictions. AI, more broadly, includes rule-based logic, NLP, and even robotics. In most business cases today, when people say “AI,” they mean ML.

If your business generates data, ML is applicable. From predictive maintenance in manufacturing to risk scoring in finance or personalization in eCommerce, ML translates raw data into models that optimize processes, reduce costs, and improve CX.

Vereinbaren Sie einen Anruf und erhalten Sie alle Antworten.

Спасибо!

Cообщение отправлено.
Мы обработаем ваш запрос и свяжемся с вами в кратчайшие сроки.

Vielen Dank!

Ihre Nachricht wurde gesendet.
Wir werden Ihre Anfrage bearbeiten und Sie so schnell wie möglich kontaktieren.

Vielen Dank!

Ihre Nachricht wurde gesendet. 

Wir werden Ihre Anfrage bearbeiten und uns so schnell wie möglich mit Ihnen in Verbindung setzen.

Pfeil