Dienstleistungen der Datenarchitektur

Most companies don’t need more data. They need a better way to organize it. We help businesses build scalable, secure, and high-performing ecosystems for better data flow and actionable insights.

100+

data architecture projects delivered

40+

data analysts & engineers

80%

erfahrene Fachkräfte

Most companies don’t need more data. They need a better way to organize it. We help businesses build scalable, secure, and high-performing ecosystems for better data flow and actionable insights.

100+

data architecture projects delivered

40+

data analysts & engineers

85%

erfahrene Fachkräfte

Dienstleistungen
Fälle
Lösungen
Warum wir
Verarbeiten Sie
Technologien
Einstellungsmodelle
Bewertungen
iOS-Features
Projekte
Architecture4

Data architecture setup 
& development

We design sturdy, flexible, modern enterprise data architectures that support your business today and scale cleanly for tomorrow. No spaghetti systems, no rebuilds in year two.

Eigenschaft 1=Expertise

Platform health checks

We audit your current stack to identify performance issues, integration gaps, and security risks, then deliver a step-by-step plan to fix, upgrade, and secure it.

Property 1=Icon 29

Data warehouse strategy

A bloated warehouse is just an expensive sinkhole. We help you pick the right platform, define schema strategy, and build for speed, governance, and growth.

Ikone 14 (7)

Data ecosystem implementation

We unify scattered systems into one clean and trusted environment. Fewer data silos, fewer sync issues, and way less manual cleanup.

AI infrastructure establishment and maintenance

We set up the data pipelines, storage layers, 
and compute environments needed to power machine learning models, ensuring your 
AI projects won’t collapse mid-training.

Analytics process management

We turn raw data into real-time decisions. 
From ingestion to visualization, we streamline your analytics pipeline so teams aren’t stuck waiting for yesterday’s numbers.

Struggling with poor data quality?

We’ll implement solutions to standardize and clean your data for trusted insights.

How data architecture services benefit your business

  • Streamlined data workflow
  • Secure & scalable infrastructure
  • Real-time, reliable insights
  • Smarter data visualization
  • Automated data collection
  • Cost-efficient data storage

Streamlined data workflow

Build structured pipelines that move, clean, and organize your data — so teams stop fighting fires and start making fast decisions.

Streamlined Data Workflow

Secure & scalable infrastructure

Protect sensitive data across all environments and scale your setup as the business evolves, without replatforming or growing pains.

Secure Infrastructure

Real-time, reliable insights

Enable always-fresh data streams so dashboards and reports reflect what’s happening now, not what happened yesterday.

Real-Time Insights

Smarter data visualization

Turn complex datasets into visual stories that reveal trends, gaps, and KPIs at a glance — helping leaders act with clarity and speed.

Datenvisualisierung

Automated data collection

Automatically collect and update data by connecting APIs, databases, and services into automated pipelines. No more data delays or missing files.

Automated Data Collection

Cost-efficient data storage

Select the optimal storage architecture — hot, cold, or hybrid — and optimize storage costs while maintaining performance and compliance.

Data Storage
Streamlined data workflow

Build structured pipelines that move, clean, and organize your data — so teams stop fighting fires and start making fast decisions. Streamlined Data Workflow

Secure & scalable infrastructure

Protect sensitive data across all environments and scale your setup as the business evolves, without replatforming or growing pains. Secure Infrastructure

Real-time, reliable insights

Enable always-fresh data streams so dashboards and reports reflect what’s happening now, not what happened yesterday. Real-Time Insights

Smarter data visualization

Turn complex datasets into visual stories that reveal trends, gaps, and KPIs at a glance — helping leaders act with clarity and speed. Datenvisualisierung

Automated data collection

Automatically collect and update data by connecting APIs, databases, and services into automated pipelines. No more data delays or missing files. Automated Data Collection

Cost-efficient data storage

Select the optimal storage architecture — hot, cold, or hybrid — and optimize storage costs while maintaining performance and compliance. Data Storage

Google-Logo. Hays-Logo. PayPal-Logo. Siemens-Logo. Nike-Logo. Volkswagen-Logo. LVMH-Logo. Nestle-Logo. Novartis-Logo. Spotify-Logo.
Google-Logo. Hays-Logo. PayPal-Logo. Siemens-Logo. Nike-Logo. Volkswagen-Logo. LVMH-Logo. Nestle-Logo. Novartis-Logo. Spotify-Logo.
Aramco-Logo Mercedes-Logo. Costco Wholesale-Logo. Shell-Logo. Accenture-Logo. NVIDIA-Logo. SPAR-Logo. Mastercard-Logo. CVS Health-Logo. Das Walt Disney-Logo.
Aramco-Logo Mercedes-Logo. Costco Wholesale-Logo. Shell-Logo. Accenture-Logo. NVIDIA-Logo. SPAR-Logo. Mastercard-Logo. CVS Health-Logo. Das Walt Disney-Logo.
Google-Logo. Hays-Logo. PayPal-Logo. Siemens-Logo. Nike-Logo. Volkswagen-Logo. LVMH-Logo.
Google-Logo. Hays-Logo. PayPal-Logo. Siemens-Logo. Nike-Logo. Volkswagen-Logo. LVMH-Logo.
Nestle-Logo. Novartis-Logo. Spotify-Logo. Aramco-Logo. Mercedes-Logo. Costco Wholesale-Logo.
Nestle-Logo. Novartis-Logo. Spotify-Logo. Aramco-Logo. Mercedes-Logo. Costco Wholesale-Logo.
Shell-Logo. Accenture-Logo. NVIDIA-Logo. SPAR-Logo. Mastercard-Logo. CVS Health-Logo. Das Walt Disney-Logo.
Shell-Logo. Accenture-Logo. NVIDIA-Logo. SPAR-Logo. Mastercard-Logo. CVS Health-Logo. Das Walt Disney-Logo.

Industries we transform

  • Einzelhandel
  • Immobilien
  • Finanzwesen
  • Versicherung
  • Logistik

By architecting unified, real-time data ecosystems, we connect sales, inventory, and behavioral insights into one actionable platform. This enables precision forecasting, dynamic pricing, and personalized engagement. Retailers gain the clarity to optimize every shelf, every offer, every transaction.

  • Increased sales from optimized stock levels
  • Higher revenue through personalized offers
  • Bessere Kundenbindung
Einzelhandel

In real estate, decisions hinge on fast access to fragmented data — leases, listings, tenant info, and financials. We build centralized data platforms that bring all of it together, automating manual work like lease extraction and enabling dynamic dashboards for asset performance and regional trends.

  • Faster deal cycles and approvals
  • Significant reduction in manual data handling
  • Lower operational overhead
Immobilien

Financial institutions can’t afford data delays. We architect secure data environments that give teams real-time visibility into risks. From API integration to regulatory reporting automation, we help finance clients reduce overhead, stay compliant, and act fast when the market shifts.

  • Stronger fraud prevention and detection
  • Reduced compliance costs
  • Increased trust in data-driven decisions
Finanzwesen

We help insurers streamline claims and customer management by unifying siloed systems into an efficient data environment. Whether it's accelerating underwriting, predicting fraud, or tailoring coverage with real-time insights, we give insurance teams the tools to make smarter decisions faster.

  • Shorter claim processing times
  • Improved pricing accuracy
  • Reduced exposure to fraudulent claims
Versicherung

Efficiency in logistics depends on how fast you can react, and that depends on how your data flows. We build architectures that integrate live fleet tracking, WMS, and TMS systems into a cohesive control layer to anticipate disruptions, optimize delivery routes, and align operations in real time.

  • Fewer delivery delays and disruptions
  • Better planning from real-time insights
  • Higher fleet and warehouse productivity
Logistik
Philip Tikhanovich
Leiter der Big Data-Abteilung

In 2025, data architecture is shifting from rigid pipelines to dynamic ecosystems. The real innovation lies in combining data mesh’s decentralized ownership with data fabric’s automation — enabling governed self-service, real-time observability, and AI-powered lineage across the entire data lifecycle. 
For clients, this means faster access to trustworthy data, fewer bottlenecks between teams, and the ability to make data-driven decisions at scale.

Philip Tikhanovich
Leiter der Big Data-Abteilung

Advanced data architecture solutions

ETL/ELT Workflows architecture
Datenmodellierung
Data lake architecture
Datenverwaltung
Data lakehouse architecture
Datenbankdesign
Data orchestration 
& automation
Data pipelines healthcheck monitoring
Master-Data-Management
Migration between 
BI systems

Unser Prozess

Initial assessment

We dig into your current setup, uncover 
blind spots, and align your data goals 
with real business impact.

Implementation strategy

We map out the smartest path forward — choosing the right tools, platforms, and architecture for your unique needs.

Structure design

We bring your architecture to life, building clean data models, robust pipelines, and storage 
that scales.

Bereitstellung

Zero chaos, full functionality. Your new data ecosystem goes live without disruption.

Datenvisualisierung und Berichterstattung

We don’t stop at structure; we connect your data 
to BI tools and dashboards that tell stories, 
not just stats.

Take control of your data

We build the data infrastructure you need to thrive, 
not just survive.

Our data architecture tools

ETL Tools
  • Apache NiFi
  • Talend
  • Informatica PowerCenter
  • IBM InfoSphere DataStage
  • SSIS
  • Apache Kafka
  • Dremio
  • RabbitMQ
  • Amazon Kinesis
  • Google Cloud Pub/Sub
  • Apache Pulsar
  • Denodo
Data Warehouse Tools
  • MySQL
  • PostgreSQL
  • SQL Server
  • Oracle
  • MongoDB
  • Cassandra
  • Couchbase
  • DynamoDB
  • Google Firestore
  • Parquet
  • InfluxDB
  • OpenTSDB
  • TimescaleDB
  • Snowflake
  • Amazon Redshift
  • Clickhouse
  • Vertica
  • Google BigQuery
  • Azure Synapse Analytics
  • Teradata
Cloud-Plattformen
BI and Data Visualization
  • Domo
  • Sisense
  • ThoughtSpot
  • Google Data Studio

Warum Innowise?

We don’t just design data architecture, we make it work in 
the real world. From predictive analytics in healthcare to live insurance dashboards, our team builds systems that deliver clarity, not complexity. We’ve done it across 120+ projects, helped companies cut operational costs by 20–40%, and delivered insights 30% faster with clean, scalable architecture.

Wählen Sie Ihr Preismodell

Festpreis

If you have a clear scope, we’ll help you define the technical specs, estimate the timeline, and deliver within a set budget.

Zeit und Material

You see exactly where the time and money go, and you only pay for what’s actually done. The spending cap sets a clear limit, so you stay in control with no runaway costs.

Turn your data chaos into clarity

Whether you’re drowning in spreadsheets or scaling fast — we’ll build the architecture to power smarter decisions.

Was unsere Kunden denken

Joanna Wolynska HR & Projektmanager Netdevops Luxembourg S.a.r.l
Netdevops' logo

"Dank der Hilfe von Innowise konnten wir das Projekt pünktlich abschließen. Ihr flexibler und anpassungsfähiger Ansatz führte zu einer reibungslosen Partnerschaft. Letztendlich waren sie nicht nur technisch kompetent, sondern auch kommunikativ, reaktionsschnell und einfach in der Zusammenarbeit."

  • BrancheIT-Services
  • Teamgröße1 Spezialist
  • Projektdauer6+ Monate
  • DienstleistungenCustom Softwareentwicklung
Johannes Schweifer CEO CoreLedger AG
CoreLedger AG's logo

"Innowise hat in der erstaunlich kurzen Zeit von nur etwa 3 Wochen eine bewundernswerte Anwendung von Grund auf neu entwickelt. Ihre langjährige und vollständige Erfahrung auf diesem Gebiet machen sie zum wertvollen Partner."

  • BrancheIT-Services
  • Teamgröße6 Spezialisten
  • Projektdauer17+ Monate
  • DienstleistungenEntwicklung mobiler Apps
Tim Benedict CTO Vitreus
Vitreus's logo

"Innowise implementierte problemlos ein MVP, was den Erfolg des Projekts kennzeichnete. Das Team hat ein hervorragendes Projektmanagement mit hocheffizienter und pünktlicher Arbeit gewährleistet. Insgesamt sind seine Leidenschaft und sein umfassendes Fachwissen herausragend."

  • BrancheGeschäftsservices
  • Teamgröße30 Spezialisten
  • Projektdauer15 Monate
  • DienstleistungenArchitekturdesign, Blockchain, kundenspezifische Entwicklung

FAQ

What is data architecture in a company?

Data architecture is the structural design that governs how data flows through your organization, from ingestion to storage, transformation, access, and analytics. It defines the standards, tools, and models that ensure data is accurate, secure, and usable across departments. Without a solid architecture, data becomes fragmented and unreliable, leading to poor decision-making and missed opportunities.

The most important part of data architecture is designing a system that can scale efficiently, maintain data integrity, and support business goals through reliable analytics. That includes choosing the right storage models (e.g. data lakes vs. warehouses), ensuring clean data pipelines, and setting up governance for security, lineage, and access control. When done right, it helps everyone in the company make faster, smarter decisions and sets the stage for things like analytics, AI, and compliance.

Data architecture services typically include assessment of your current data environment, design of logical and physical data models, development of ETL/ELT pipelines, setup of data warehouses or lakehouses, implementation of governance and security policies, and integration with BI tools. The goal is to create a scalable, secure, and analytics-ready data ecosystem tailored to your business needs.

Some common examples of data architecture include a centralized data warehouse that consolidates data from multiple departments for unified reporting, an ELT pipeline that processes retail transactions in near real time, or a data lakehouse that merges raw IoT sensor data with curated datasets for advanced analytics. These architectures are designed to support specific business needs like forecasting, personalization, or regulatory compliance.

Data architecture is about organizing and managing data in traditional systems, making it easy to access and store. Big data architecture, on the other hand, is built to handle large amounts of fast-moving data. The main difference is that data architecture is for regular data management, while big data architecture is designed to scale and process massive datasets in real time.

Vereinbaren Sie einen Anruf und erhalten Sie alle Antworten.

Kontakt aufnehmen

Termin vereinbaren oder füllen Sie das Formular unten aus und wir melden uns bei Ihnen, sobald wir Ihre Anfrage bearbeitet haben.

    Senden Sie uns eine Sprachnachricht
    Fügen Sie die Dokumente bei
    Datei hochladen

    Sie können 1 Datei mit bis zu 2 MB anhängen. Gültige Dateiformate: pdf, jpg, jpeg, png.

    Durch Klicken auf Senden erklären Sie sich damit einverstanden, dass Innowise Ihre personenbezogenen Daten gemäß unserer Datenschutzrichtlinie verarbeitet, um Ihnen relevante Informationen zukommen zu lassen. Mit der Angabe Ihrer Telefonnummer erklären Sie sich damit einverstanden, dass wir Sie per Sprachanruf, SMS und Messaging-Apps kontaktieren. Es können Gebühren für Anrufe, Nachrichten und Datenübertragung anfallen.

    Sie können uns auch kontaktieren
    über contact@innowise.com

    Warum Innowise?

    2000+

    IT-Fachleute

    93%

    wiederkehrende Kunden

    18+

    Jahre Expertise

    1300+

    erfolgreiche Projekte

    Benötigen Sie andere Services?

    Спасибо!

    Cообщение отправлено.
    Мы обработаем ваш запрос и свяжемся с вами в кратчайшие сроки.

    Vielen Dank!

    Ihre Nachricht wurde gesendet.
    Wir werden Ihre Anfrage bearbeiten und Sie so schnell wie möglich kontaktieren.

    Vielen Dank!

    Ihre Nachricht wurde gesendet. 

    Wir werden Ihre Anfrage bearbeiten und uns so schnell wie möglich mit Ihnen in Verbindung setzen.

    Pfeil