Desenvolvimento de aprendizagem automática

Innowise delivers more than algorithms — we bring a fundamental shift in how you operate. From automating routine tasks to enhancing customer experiences and predicting market trends, we build ML systems that grow with your business, eliminate inefficiencies, and unlock new revenue streams.

40+

completed machine learning projects

40+

AI/ML engineers

75%

programadores de nível médio e sénior

Innowise delivers more than algorithms — we bring a fundamental shift in how you operate. From automating routine tasks to enhancing customer experiences and predicting market trends, we build ML systems that grow with your business, eliminate inefficiencies, and unlock new revenue streams.

40+

completed machine learning projects

40+

AI/ML engineers

75%

programadores de nível médio e sénior

Drowning in messy data with no clear direction?

Let ML turn that chaos into clarity.

Logótipo da Google. Logótipo Hays. Logótipo PayPal. Logótipo da Siemens. Logótipo da Nike. Logótipo da Volkswagen. Logótipo LVMH. Logótipo da Nestlé. Logótipo da Novartis. Logótipo do Spotify.
Logótipo da Google. Logótipo Hays. Logótipo PayPal. Logótipo da Siemens. Logótipo da Nike. Logótipo da Volkswagen. Logótipo LVMH. Logótipo da Nestlé. Logótipo da Novartis. Logótipo do Spotify.
Logótipo da Aramco Logótipo da Mercedes. Logótipo da Costco Wholesale. Logótipo da casca. Logótipo da Accenture. Logótipo NVIDIA. Logótipo SPAR. Logótipo Mastercard. Logótipo da CVS Health. O logótipo da Walt Disney.
Logótipo da Aramco Logótipo da Mercedes. Logótipo da Costco Wholesale. Logótipo da casca. Logótipo da Accenture. Logótipo NVIDIA. Logótipo SPAR. Logótipo Mastercard. Logótipo da CVS Health. O logótipo da Walt Disney.
Logótipo da Google.Logótipo Hays.Logótipo PayPal.Logótipo da Siemens.Logótipo da Nike.Logótipo da Volkswagen.Logótipo LVMH.
Logótipo da Google.Logótipo Hays.Logótipo PayPal.Logótipo da Siemens.Logótipo da Nike.Logótipo da Volkswagen.Logótipo LVMH.
Logótipo da Nestlé.Logótipo da Novartis.Logótipo do Spotify.Logótipo da Aramco.Logótipo da Mercedes.Logótipo da Costco Wholesale.
Logótipo da Nestlé.Logótipo da Novartis.Logótipo do Spotify.Logótipo da Aramco.Logótipo da Mercedes.Logótipo da Costco Wholesale.
Logótipo da casca.Logótipo da Accenture.Logótipo NVIDIA. Logótipo SPAR.Logótipo Mastercard.Logótipo da CVS Health.O logótipo da Walt Disney.
Logótipo da casca.Logótipo da Accenture.Logótipo NVIDIA. Logótipo SPAR.Logótipo Mastercard.Logótipo da CVS Health.O logótipo da Walt Disney.

Soluções de aprendizagem automática que criamos

Manutenção preventiva
Detecção de fraudes
Previsão da procura
Preços dinâmicos
Virtual assistants & real-time chatbots
Marketing automation solutions
Análise do comportamento do cliente
Document, image & video processing
Sistemas de recomendação inteligentes
Mostrar tudo Mostrar menos
Philip Tihonovich
Chefe do Departamento de Grandes Dados

As noted in PluralSight’s AI Skill Report, 97% of companies deploying AI technologies report gains in productivity, service quality, and accuracy. Now, it’s clear: machine learning has shifted from a nice-to-have to a business-critical engine. It’s no longer about building models that look good in a lab — it’s about setting up living, breathing systems that learn, adapt, and drive real results where it matters most.

Philip Tihonovich
Chefe do Departamento de Grandes Dados

Our approach to machine learning development

At Innowise, we combine deep expertise in data science, MLOps, and model architecture design to build solutions that are not only accurate but also scalable, interpretable, and resilient in production.

Análise dos requisitos

We start by translating business challenges into ML objectives. Clear goals upfront lead to models that actually deliver measurable impact.

Data preparation & processing

Before any model sees the light of day, we dig into the data — cleaning, structuring, and transforming it into a form that a machine can truly learn from.

Engenharia de recursos

We transform cleaned data into smart inputs — choosing the right features, encoding categories, scaling numbers, and removing noise so the model can focus on real patterns.

Desenvolvimento de modelos

We train models using the right algorithms, tune parameters, and validate performance to build solutions that work in real-world conditions.

Implantação do modelo

Once the model is trained and validated, we prepare it for real-world use. This includes setting up APIs or batch processing pipelines, integrating the model with your existing systems, and more.

Afinação de modelos

Performance isn't a one-and-done deal. We monitor, fine-tune, retrain, and adapt models over time to keep them sharp.

Manutenção dos seus algoritmos de ML por profissionais

With 40+ expert ML engineers and 40+ successful projects, we help businesses turn data into real growth. From smarter decision-making to faster operations, our models are built to solve real-world challenges, boost efficiency, and open new revenue streams.

Plataformas com que trabalhamos

Aprendizagem automática AWS
  • Vértice IA
  • IA de conversação da Google
  • Google AI para documentos
  • IA da Google para sectores de actividade
Aprendizagem automática do Azure
  • Serviços Cognitivos Azure
  • Aprendizagem automática do Azure
  • Serviços de Bot do Azure
  • Serviços de IA Aplicada do Azure
Aprendizagem automática Google
  • Amazon SageMaker
  • Amazon Transcribe & Polly
  • Amazon Comprehend
  • Amazon Rekognition

Escolha o seu modelo de preços

Preço fixo

If you already have a clear idea of what you need, a fixed price is the simplest way forward. You’ll lock in the budget and deadlines upfront, so you can stay focused without worrying about unexpected costs.

Tempo e materiais com um limite

If you’re still shaping the project or expect things to change along the way, the time and material model gives you the flexibility to adjust. You’ll pay for the work as it happens, which is perfect for ML projects.

Tired of one-size-fits-all software?

We create ML solutions built around your business needs.

O que pensam os nossos clientes

Tim Benedito CTO Vitreus
logótipo da empresa

"A Innowise entregou com sucesso o MVP do cliente, marcando o sucesso do projeto. A equipa ofereceu uma excelente gestão de projectos, uma vez que são altamente eficientes e cumprem sempre os prazos. De um modo geral, a sua paixão e profundidade de conhecimentos são notáveis."

  • Indústria Serviços às empresas
  • Dimensão da equipa 30 especialistas
  • Duração 15 meses
  • Serviços Conceção arquitetónica, cadeia de blocos, desenvolvimento personalizado
Ory Goldberg CEO Traxi
logótipo da empresa

"Estou muito satisfeito com o seu trabalho de alta qualidade e com a sua capacidade de fornecer exatamente o que pretendo através de uma abordagem muito profissional. O seu processo flexível e disponível é fundamental para o sucesso do projeto em curso."

  • Indústria Software
  • Dimensão da equipa 10 especialistas
  • Duração Mais de 24 meses
  • Serviços Desenvolvimento móvel, desenvolvimento web
Davide Criscione Fundador e Director Executivo DC Services GmbH
logótipo da empresa

"A Innowise encontrou recursos de alta qualidade que se enquadram bem nas equipas internas designadas. Tinham os recursos prontos para começar num curto espaço de tempo. A equipa oferece uma gestão de projectos ágil e personalizada. Além disso, são proactivos e não prometem demasiado."

  • Indústria Serviços informáticos
  • Dimensão da equipa 12 especialistas
  • Duração Mais de 15 meses
  • Serviços Aumento do pessoal

FAQ

How much does machine learning app development cost?

Budgets typically fall between $40K–$200K. Costs depend on data preprocessing, model architecture (e.g., regression, CNNs, transformers), infrastructure (cloud/on-prem), and integration scope.

There’s no one-size-fits-all answer — simple models with clean data can be built in a few weeks, but real-world projects usually stretch over several months. A lot of time gets spent not on building the model itself, but on wrangling messy data, crafting meaningful features, tuning hyperparameters, and stress-testing the model across different scenarios.

We start by checking the data, looking for imbalances or patterns that could cause bias later. When we fine-tune models, we sometimes adjust the data weights or use special techniques like adversarial debiasing to help the model treat different groups more fairly. We also use explainability tools like SHAP to understand why the model makes certain predictions. After launch, we keep monitoring the model to catch any new biases early.

Machine learning is just one part of AI. ML focuses on learning from data—finding patterns, making predictions. AI, more broadly, includes rule-based logic, NLP, and even robotics. In most business cases today, when people say “AI,” they mean ML.

If your business generates data, ML is applicable. From predictive maintenance in manufacturing to risk scoring in finance or personalization in eCommerce, ML translates raw data into models that optimize processes, reduce costs, and improve CX.

Não hesite em marcar uma chamada e obter todas as respostas de que necessita.

FAQ

How much does machine learning app development cost?

Budgets typically fall between $40K–$200K. Costs depend on data preprocessing, model architecture (e.g., regression, CNNs, transformers), infrastructure (cloud/on-prem), and integration scope.

There’s no one-size-fits-all answer — simple models with clean data can be built in a few weeks, but real-world projects usually stretch over several months. A lot of time gets spent not on building the model itself, but on wrangling messy data, crafting meaningful features, tuning hyperparameters, and stress-testing the model across different scenarios.

We start by checking the data, looking for imbalances or patterns that could cause bias later. When we fine-tune models, we sometimes adjust the data weights or use special techniques like adversarial debiasing to help the model treat different groups more fairly. We also use explainability tools like SHAP to understand why the model makes certain predictions. After launch, we keep monitoring the model to catch any new biases early.

Machine learning is just one part of AI. ML focuses on learning from data—finding patterns, making predictions. AI, more broadly, includes rule-based logic, NLP, and even robotics. In most business cases today, when people say “AI,” they mean ML.

If your business generates data, ML is applicable. From predictive maintenance in manufacturing to risk scoring in finance or personalization in eCommerce, ML translates raw data into models that optimize processes, reduce costs, and improve CX.

Não hesite em marcar uma chamada e obter todas as respostas de que necessita.

Спасибо!

Cообщение отправлено.
Мы обработаем ваш запрос и свяжемся с вами в кратчайшие сроки.

Obrigado!

A sua mensagem foi enviada.
Processaremos o seu pedido e contactá-lo-emos o mais rapidamente possível.

Obrigado!

A sua mensagem foi enviada. 

Processaremos o seu pedido e contactá-lo-emos logo que possível.

seta