Bitte hinterlassen Sie Ihre Kontaktdaten, wir senden Ihnen dann unsere Übersicht per E-Mail zu
Ich stimme der Verarbeitung meiner persönlichen Daten zu, um personalisiertes Marketingmaterial in Übereinstimmung mit der der Datenschutzrichtlinie geschickt zu bekommen. Mit der Bestätigung der Anmeldung erklären Sie sich damit einverstanden, Marketingmaterial zu erhalten
Vielen Dank!

Das Formular wurde erfolgreich abgeschickt.
Weitere Informationen finden Sie in Ihrem Briefkasten.

In keiner Weise ist eine internationale Vollzyklus-Softwareentwicklung das Unternehmen wurde 2007 gegründet. Wir sind ein Team von über 1800+ IT-Experten, die Software für andere entwickeln profis weltweit.
Über uns
Innowise ist ein internationales Unternehmen für den vollen Zyklus der Softwareentwicklung, welches 2007 gegründet wurde. Unser Team besteht aus mehr als 1600+ IT-Experten, welche Software für mehrere Branchen und Domänen weltweit entwickeln.

Chatbot für die Entwicklung der Datenanalyse: 67% Verbesserung der Latenzzeit

Unter Verwendung der bestehenden großen Sprachmodelle (LLM) haben wir eine analytische Plattform ähnlich ChatGPT entwickelt, die die internen Daten des Unternehmens analysieren und auf der Grundlage dieser Informationen Antworten auf Fragen generieren kann.

Der Kunde

Branche
eCommerce
Region
VK
Kunde seit
2023

Unser Kunde, ein aufstrebendes Startup-Unternehmen, hatte eine Vision für ein Produkt, das für den Verkauf an seine Großkunden im Einzelhandelssektor entwickelt wurde.

Detaillierte Information über den Kunden kann im Rahmen der NDA nicht offengelegt werden.

Herausforderung

Der Bedarf an einer Analyseplattform, die sofortigen Zugriff auf interne Dokumente bietet und datengestützte Erkenntnisse liefert

Hauptschmerzpunkt: Interne Dokumente, einschließlich Mitarbeiterunterlagen, Marketingdaten und Vertriebsinformationen, sind nur schwer zugänglich. Bei Tausenden von Dateien in Formaten wie PDF, CSV, Parquet, TXT und DOCX ist das Auffinden und Analysieren bestimmter Informationen zeitaufwändig und fehleranfällig.

Sekundäre Herausforderungen: Wenn ein Unternehmen wächst, nimmt das Volumen an Dokumenten und Informationen zu, was die Herausforderungen bei der Datenzugänglichkeit und -analyse weiter verschärft. Ohne ein geeignetes Dokumentenanalysesystem werden diese Probleme mit der Zeit immer offensichtlicher.

Unser Kunde erkannte diese Herausforderungen und wandte sich an Innowise, um einen Chatbot für die Datenanalyse zu entwickeln, den er seinen Großkunden anbieten wollte.

Lösung

Die Chatbot-Datenanalysesoftware, die auf die Verarbeitung interner Daten zugeschnitten ist

Innowise hat den Chatbot entwickelt Datenanalysesoftware unter Verwendung der vorhandenen großen Sprachmodelle. Das Chatsystem funktioniert ähnlich wie die vorhandenen Bots, ist aber auf die Verarbeitung interner Daten zugeschnitten. Die Entwicklung umfasste den Aufbau eines vollständigen Systems für die Integration von LLM mit den relationalen und Dokumentendatenbanken, einschließlich interner Client-Datenspeicherlösungen, und die Bereitstellung einer reibungslosen Interaktion zwischen der Plattform und den Benutzern.

Extraktion von Informationen

Die Funktionen zur Dokumentenanalyse und -verarbeitung ermöglichen die Extraktion relevanter Informationen aus internen Unternehmensdokumenten wie Richtlinien, Anweisungen, Leitfäden, Betriebsdaten und technischen Spezifikationen. Auf diese Weise kann der Benutzer schnell genaue und aktuelle Antworten auf seine Fragen erhalten, ohne Daten manuell suchen und analysieren zu müssen.

RAG AI-erhöhte Leistung

Wir haben die Leistung des Chatbots durch folgende Maßnahmen gesteigert tägliche manuelle Tests und die Verfeinerung des Chatbots mit Hilfe von RAG (retrieval-augmented generation) AI. Dieser Ansatz kombiniert die Informationsbeschaffung mit der Generierung natürlicher Sprache, wodurch die Antworten informativer und relevanter werden. Wir haben auch ein Feedback-System eingeführt, um die Präferenzen der Nutzer zu analysieren, was die RAG weiter verbessert und das Vertrauen der Nutzer in den Chatbot erhöht hat.

Schnelle Antwortzeit

Durch die Implementierung von Zwischenspeicherung, Abfrageoptimierung und Parallelverarbeitung konnten wir die Geschwindigkeit und Effizienz der Benutzerinteraktionen mit dem Chatbot erheblich verbessern. Dank der im Cache gespeicherten, häufig angefragten Informationen können die Nutzer schneller Antworten erhalten. Außerdem nutzen wir die Parallelverarbeitung, um die Arbeitslast zu verteilen, so dass das System mehrere Anfragen gleichzeitig bearbeiten kann. Dadurch ist der Chatbot auch in Spitzenzeiten reaktionsschneller.

Datenextraktion aus dem Data Mart

Wir haben einen Datenspeicher für die Verarbeitung strukturierter relationaler Daten erstellt. Diese Chatbot-Funktion umfasst Anfragen zum Abrufen von Informationen aus dem Data Mart. Durch den direkten Zugriff auf den Data Mart über den Chatbot können die Nutzer mühelos die benötigten Informationen erhalten, ohne andere Quellen zu konsultieren. Dieser vereinfachte Zugriff bedeutet, dass die Entscheidungsträger jederzeit über aktuelle Erkenntnisse verfügen und so flexibel auf Marktveränderungen und strategische Chancen reagieren können.

KI-gestütztes System zur Dokumentensuche

Wir haben die Verwaltung und den Abruf von Dokumenten durch die Integration von Azure Datensee Gen 2 für die Aufnahme von Dokumenten, die Segmentierung von Dokumenten in Chunks und die Verwendung von Azure OpenAI zur Erzeugung von Einbettungen. Diese Einbettungen werden in Azure AI Search für eine effiziente Analyse und Abfrage gespeichert. Benutzeranfragen werden durch Azure OpenAI Search verarbeitet, wobei die Einbettungen der Anfrage mit den gespeicherten Dokumenteneinbettungen verglichen werden, um sofort relevante Antworten zu liefern.

Vielfältige Möglichkeiten der Informationsdarstellung

Die Informationen werden in Form von mit Plotly erstellten Diagrammen, mit Material UI gestalteten Tabellen und einfachem Textinhalt präsentiert. Diese Mischung macht den Inhalt ansprechender und hilft dabei, die Details auf eine Weise zu vermitteln, die leicht zu verstehen ist und auf die man reagieren kann.

Sprachabfragelogik mit Text-zu-Sprache-Übersetzung

Unser Team hat neben textbasierten Interaktionen auch Sprachabfragefunktionen in den Chatbot zur Datenanalyse integriert. Die Nutzer können nun mühelos über Sprachbefehle mit dem Bot interagieren und haben zusätzlich die Möglichkeit, gesprochenen Text in schriftliche Form zu übersetzen.

Technologien

Front-End

Axios, Material UI, Plotly, React, React-Kontext, react-markdown, TypeScript

Back-End

Azure AI Search, Azure App Service, Azure Data Factory, Azure Data Lake Gen2, Azure Databricks, Azure Functions, Azure OpenAI, Bicep, Cosmos DB, Spark

Büchereien

Axios, Material UI, Matplotlib, NumPy, Pandas, Plotly, PySpark, React Context, react-markdown, Streamlit, TypeScript

Prozess

Zunächst führten wir eine detaillierte Analyse der Geschäftsanforderungen durch und entwarfen auf dieser Grundlage einen umfassenden Plan für die Software.

Anschließend erstellten wir auf der Grundlage der gesammelten Informationen eine visuelle Darstellung des Chatbots, die Wireframes, Prototypen und Mockups umfasste. Die Designphase konzentrierte sich auf die Schaffung einer benutzerfreundlichen Oberfläche, die den Kunden eine einfache Navigation und einen einfachen Zugang zu den Funktionen des Chatbots ermöglicht.

Die Entwicklung umfasste die Erstellung eines umfassenden Systems zur Integration von LLM mit relationalen und Dokumentendatenbanken, einschließlich interner Datenspeicherlösungen für Kunden. Wir sorgten für eine reibungslose Interaktion zwischen der Plattform und den Nutzern, indem wir die Verarbeitung natürlicher Sprache (NLP) einsetzten, um Schlüsselinformationen sofort zu extrahieren, und indem wir die KI für kontextrelevante Antworten integrierten. 

Wir haben die Leistung durch Caching, verbesserte Abfrageeffizienz und parallele Verarbeitung optimiert und gleichzeitig einen direkten Zugriff auf strukturierte Daten aus dem Data Mart ermöglicht. 

Schließlich haben wir Sprachabfrage- und Text-to-Speech-Funktionen integriert, um die Zugänglichkeit zu verbessern und die unterschiedlichen Bedürfnisse der Nutzer zu erfüllen.

Team

1

Front-End-Entwickler

1

Back-End-Entwickler

1

Datenwissenschaftler

1

Daten-Ingenieur

1

Dateningenieur / DevOps

Ergebnisse

Eine 67% Verbesserung der Latenzzeit bei Abfragen und Datenverarbeitung

Unser Team hat eine maßgeschneiderte Analyseplattform entwickelt, die unsere Kunden dann persönlich durch praktische Tests evaluiert haben. Dies hat zu mehreren bemerkenswerten Ergebnissen geführt:

  • Operative Agilität und schnellere, fundierte Entscheidungen: Der Einsatz eines verteilten Speicher- und Rechensystems mit Azure Databricks, ADLS Gen2 und Spark-Funktionen hat die Lösung durch schnellere Datenverarbeitung und Skalierbarkeit für die Verarbeitung umfangreicher Datensätze verbessert.
  • Eine 67% Verbesserung der Latenzzeit bei Abfragen und Datenverarbeitung: Geringe Latenzzeiten bedeuten schnellere Antwortzeiten für Abfragen und Datenverarbeitung, was zu einer verbesserten Zuverlässigkeit und Plattformleistung führt.
  • Höhere Produktivität des Teams: Teams haben durch den schnellen Dateizugriff und die schnelle Dateiverwaltung einen großen Effizienzschub erhalten. Dank besserer Zusammenarbeit und weniger Verwaltungsarbeit können sich die Teammitglieder stärker auf ihre Kernaufgaben konzentrieren und Projekte schneller vorantreiben.

 

Diese fortschrittliche Chatbot-Plattform bietet eine außergewöhnliche Leistung und verbessert das Benutzererlebnis durch die schnelle Extraktion von Schlüsselinformationen aus internen Dokumenten mithilfe von NLP. Durch die Integration von RAG AI für kontextbezogene Antworten wird die Antwortzeit durch Caching, Abfrageeffizienz und parallele Verarbeitung optimiert und gleichzeitig ein direkter Zugriff auf strukturierte Daten aus dem Data Mart ermöglicht. Sprachabfragen und Text-to-Speech-Funktionen verbessern die Zugänglichkeit und erfüllen die unterschiedlichsten Benutzeranforderungen. 

Unser Kunde begann, die Lösung seinen Kunden anzubieten, und sie gewann schnell an Zugkraft mit beeindruckenden Verkaufszahlen. Die Effektivität und Benutzerfreundlichkeit der Lösung haben zu hohen Zufriedenheitsraten unter den Kunden geführt, was ihren Erfolg auf dem Markt weiter gefestigt hat.

Projektdauer
  • Oktober 2023 - Februar 2024

67%

schnellere Abfrage und Datenverarbeitung

34%

Steigerung der Leistung der Teams

Kontaktieren Sie uns!

Einen Anruf buchen oder füllen Sie das Formular unten aus und wir melden uns bei Ihnen, sobald wir Ihre Anfrage bearbeitet haben.

    Bitte fügen Sie Projektdetails, Dauer, Technologie-Stack, benötigte IT-Experten und andere Infos bei.
    Bitte fügen Sie Projektdetails, Dauer, Technologie-Stack, benötigte IT-Experten
    und andere Infos bei.
    Hängen Sie nach Bedarf zusätzliche Dokumente an.
    Datei hochladen

    Sie können bis zu 1 Datei von insgesamt 2 MB anhängen. Gültige Dateien: pdf, jpg, jpeg, png

    Bitte beachten Sie, dass Innowise mit dem Anklicken der Schaltfläche 'Senden' Ihre persönlichen Daten nach der Datenschutzrichtlinie verarbeiten wird, um Ihnen die gewünschten Informationen zukommen zu lassen.

    Wie geht es weiter?

    1

    Sobald wir Ihre Anfrage erhalten und bearbeitet haben, werden wir uns mit Ihnen in Verbindung setzen, um Ihre Projektanforderungen zu besprechen und eine NDA (Vertraulichkeitserklärung) für die Vertraulichkeit der Informationen zu unterzeichnen.

    2

    Nach der Prüfung der Anforderungen erstellen unsere Analysten und Entwickler einen Projektvorschlag, der Arbeitsumfang, Teamgröße, Zeit- und Kostenschätzung enthält.

    3

    Wir vereinbaren einen Termin mit Ihnen, um das Angebot zu besprechen und eine Vereinbarung mit Ihnen zu treffen.

    4

    Wir unterzeichnen einen Vertrag und beginnen umgehend mit der Arbeit an Ihrem Projekt.

    Спасибо!

    Cообщение отправлено.
    Мы обработаем ваш запрос и свяжемся с вами в кратчайшие сроки.

    Vielen Dank!

    Ihre Nachricht wurde gesendet.
    Wir werden Ihre Anfrage bearbeiten und Sie so schnell wie möglich kontaktieren.

    Vielen Dank!

    Ihre Nachricht wurde gesendet. 

    Wir werden Ihre Anfrage bearbeiten und uns so schnell wie möglich mit Ihnen in Verbindung setzen.

    Pfeil