Skjemaet har blitt sendt inn.
Mer informasjon finner du i postkassen din.
Innowise har utviklet en innovativ AI-plattform som kan identifisere depresjon hos pasienter gjennom EEG-skanninger.
Vår kunde er en av de største representantene innen helsevesenet. De driver sitt eget medisinske senter i USA.
Detaljert informasjon om kunden kan ikke utleveres i henhold til bestemmelsene i NDA.
Over 1 milliard mennesker over hele verden lider av psykiske lidelser, og depresjon rammer mer enn 300 millioner. For å bidra til tidlig diagnose og omfattende behandling har forskere identifisert EEG-biomarkører og AI-teknologi for ansiktsfølelsesgjenkjenning som lovende verktøy. Ved å bruke AI ansiktsfølelsesgjenkjenning, som bruker maskinlæring til å analysere ansiktsuttrykk og oppdage mønstre forbundet med psykiske lidelser, kan vi tilby en ikke-invasiv og praktisk metode for å oppdage potensielle psykiske helseproblemer. Med ansiktsfølelsesgjenkjenning ved hjelp av maskinlæring kan vi utvide tradisjonelle kliniske tilnærminger til diagnostisering og behandling av psykisk helse, og gi mer effektive og inkluderende løsninger.
Innowise ble kontaktet av en kunde med krav om å utvikle en automatisert løsning som bruker AI til å oppdage menneskelige følelser knyttet til depresjon hos pasienter. Ved å utnytte avansert emosjonell AI-teknologi og ekspertise utviklet Innowise en løsning som kan hjelpe klinikere med å gi rettidig og effektiv behandling til de som sliter med depresjon.
CLOUD ML-APPLIKASJON
Vi valgte en skybasert applikasjon fordi den gir en rekke fordeler for våre kunder. løsning for maskinlæring (ML), inkludert forbedret sikkerhet og datalagringsmuligheter. Den implementerte SaaS-løsningen eliminerer behovet for høy prosessorkraft, datalagring og flere servere for å behandle ML-algoritmer samtidig.
Teamet vårt har også utviklet et API som forbedrer brukeropplevelsen ved automatisk å starte trente maskinlæringsmodeller for å behandle brukerdata og vise resultater i sanntid.
Samlet sett gir den utviklede skybaserte SaaS-løsningen og tilhørende API en omfattende og strømlinjeformet tilnærming til maskinlæring, og gir kundene våre de mulighetene de trenger for å nå sine mål.
ML OPPLÆRING
For å støtte våre AI-modeller og prediktive analyser har utviklingsteamet vårt implementert datasjøer, som gir en robust og skalerbar lagringsløsning for store datamengder. Dette gjør det mulig for oss å gjennomføre omfattende emosjonelle AI-analyser og hente ut verdifull innsikt for kundene våre. Deretter integrerte vi sømløst datavarehus, fullførte transformasjonsprosessen og renset dataene effektivt før de ble lastet opp.
Når EEG-skanningen når skyen, utnytter ML-modellen dataene som er lagret i datavarehuset for å vurdere og nøyaktig bestemme om pasienten har depresjon.
Det er viktig å merke seg at arbeidet med medisinske data var den mest utfordrende delen av utviklingen. Innowise-teamet klarte imidlertid å lære opp ML-modellen og integrere den i medisinsk praksis.
Denne prestasjonen viser ikke bare teamets dyktighet i å håndtere komplekse og sensitive medisinske data, men understreker også vårt engasjement for å tilby best mulige løsninger for våre kunder.
NETTGRENSESNITT
For å forenkle prosessen med å få resultater har vi utviklet et intuitivt nettgrensesnitt som strømlinjeformer brukeropplevelsen. Denne løsningen eliminerer behovet for manuell dataregistrering, noe som reduserer risikoen for feil betydelig og lar brukerne enkelt og raskt få nøyaktige og pålitelige resultater.
Takket være det intuitive grensesnittet er det dessuten mulig å navigere gjennom systemet og innhente de nødvendige dataene uten teknisk ekspertise eller kompliserte prosedyrer.
Til tross for den komplekse og flertrinns utviklingsprosessen hadde Innowise-teamet nok ekspertise til å løse alle spørsmål og problemer i tide.
I den første fasen engasjerte vi en spesialist i modellvalidering som brukte forskjellige verktøy for å utforske ML-modellprediksjoner. Stor innsats ble gitt for en grundig forberedelse av datamerking, noe som til slutt førte til enorme tidsbesparelser siden vi hadde konfigurert praktisk infrastruktur for alle spesialister. Forskningstrinnet inkluderte forskjellige modellprøver og ble effektivt utført via et designet valideringsskjema.
Etter at spesialistene våre hadde filtrert dataene, begynte de å trene ML-modellen. Denne fasen besto av flere stadier med forbedring og raffinering av modellen. Til slutt integrerte utviklerne den trente modellen i skyapplikasjonen.
Når det gjelder prosjektledelse, brukte vi Slack og Jira for å samarbeide om prosjektet internt i selskapet og Google Chats for ekstern kommunikasjon med kunden. Vi brukte Scrum-metodikk, med daglige møter og demopresentasjoner av mellomresultater hver måned.
Fra og med i dag fortsetter vi å støtte prosjektet og løse eventuelle problemer som oppstår inntil alt fungerer som det skal på kundens side.
Teamet vårt leverte en avansert AI-app for mental helse til kunden vår, og ga dem en trent modell som er i stand til å oppdage depresjon fra EEG-skanninger og identifisere biomarkører for å forutsi behandlingsrespons. Denne innovative ML-plattformen er en ny tilnærming til behandling av depresjon som øker sannsynligheten for godkjenning av nye legemidler.
Den AI-baserte appen for psykisk helse er enkel å bruke for helsepersonell, siden de skannede resultatene administreres via et intuitivt nettgrensesnitt. I tillegg har utviklingsteamet bygget et datainnsamlingssystem med et verktøysett for rask merking av data, noe som optimaliserer prosessen for klinikere og forskere.
Siden implementeringen av den utformede løsningen har kunden sett betydelige fordeler, inkludert økte klinikkmidler og en utvidet kundebase. Ved å tilby et unikt verktøy for depresjonsbehandling har kunden vår posisjonert seg i forkant av bransjen og tiltrukket seg flere pasienter som søker banebrytende behandlinger.
Etter at vi har mottatt og behandlet forespørselen din, vil vi komme tilbake til deg innen kort tid for å beskrive prosjektbehovene dine og undertegne en taushetserklæring for å sikre informasjonens konfidensialitet.
Etter å ha undersøkt kravene, utarbeider våre analytikere og utviklere en prosjektforslag med arbeidsomfang, teamstørrelse, tid og kostnader estimater.
Vi arrangerer et møte med deg for å diskutere tilbudet og komme til en avtale.
Vi signerer en kontrakt og begynner å jobbe med prosjektet ditt så raskt som mulig.
© 2007-2024 Innowise. Alle rettigheter forbeholdt.
Personvernerklæring. Retningslinjer for informasjonskapsler.
Innowise Sp. z o.o Ul. Rondo Ignacego Daszyńskiego, 2B-22P, 00-843 Warszawa, Polen
Ved å registrere deg godtar du vår Retningslinjer for personvern, inkludert bruk av informasjonskapsler og overføring av dine personopplysninger.
Takk skal du ha!
Meldingen din er sendt.
Vi behandler forespørselen din og kontakter deg så snart som mulig.
Takk skal du ha!
Meldingen din er sendt.
Vi behandler forespørselen din og kontakter deg så snart som mulig.